Herein, the performance of AlGaN/GaN high-electron-mobility transistor (HEMT) devices fabricated on Si and sapphire substrates is investigated. The drain current of the AlGaN/GaN HEMT fabricated on sapphire and Si substrates improved from 155 and 150 mA/mm to 290 and 232 mA/mm, respectively, at VGS = 0 V after SiO2 passivation. This could be owing to the improvement in the two-dimensional electron gas charge and reduction in electron injection into the surface traps. The SiO2 passivation resulted in the augmentation of breakdown voltage from 245 and 415 V to 400 and 425 V for the AlGaN/GaN HEMTs fabricated on Si and sapphire substrates, respectively, implying the effectiveness of SiO2 passivation. The lower transconductance of the AlGaN/GaN HEMT fabricated on the Si substrate can be ascribed to the higher self-heating effect in Si. The X-ray rocking curve measurements demonstrated that the AlGaN/GaN heterostructures grown on sapphire exhibited a full-width half maximum of 368 arcsec against 703 arcsec for the one grown on Si substrate, implying a better crystalline quality of the AlGaN/GaN heterostructure grown on sapphire. The AlGaN/GaN HEMT fabricated on the sapphire substrate exhibited better performance characteristics than that on the Si substrate, owing to the high crystalline quality and improved surface.