Molecular understanding of the electrochemical
oxidation of metals
and the electro-reduction of metal oxides is of pivotal importance
for the rational design of catalyst-based devices where metal(oxide)
electrodes play a crucial role.
Operando
monitoring
and reliable identification of reacting species, however, are challenging
tasks because they require surface-molecular sensitive and specific
experiments under reaction conditions and sophisticated theoretical
calculations. The lack of molecular insight under operating conditions
is largely due to the limited availability of
operando
tools and to date still hinders a quick technological advancement
of electrocatalytic devices. Here, we present a combination of advanced
density functional theory (DFT) calculations considering implicit
solvent contributions and time-resolved electrochemical surface-enhanced
Raman spectroscopy (EC-SERS) to identify short-lived reaction intermediates
during the showcase electro-reduction of Au oxide (AuOx) in sulfuric
acid over several tens of seconds. The EC-SER spectra provide evidence
for temporary Au-OH formation and for the asynchronous adsorption
of (bi)sulfate ions at the surface during the reduction process. Spectral
intensity fluctuations indicate an OH/(bi)sulfate turnover period
of 4 s. As such, the presented EC-SERS potential jump approach combined
with implicit solvent DFT simulations allows us to propose a reaction
mechanism and prove that short-lived Au-OH intermediates also play
an active role during the AuOx electro-reduction in acidic media,
implying their potential relevance also for other electrocatalytic
systems operating at low pH, like metal corrosion, the oxidation of
CO, HCOOH, and other small organic molecules, and the oxygen evolution
reaction.