Intrinsically disordered
proteins (IDPs) are proteins that, in
comparison with globular/structured proteins, lack a distinct tertiary
structure. Here, we use the model IDP, Histatin 5, for studying its
dynamical properties under self-crowding conditions with quasi-elastic
neutron scattering in combination with full atomistic molecular dynamics
(MD) simulations. The aim is to determine the effects of crowding
on the center-of-mass diffusion as well as the internal diffusive
behavior. The diffusion was found to decrease significantly, which
we hypothesize can be attributed to some degree of aggregation at
higher protein concentrations, (≥100 mg/mL), as indicated by
recent small-angle X-ray scattering studies. Temperature effects are
also considered and found to, largely, follow Stokes–Einstein
behavior. Simple geometric considerations fail to accurately predict
the rates of diffusion, while simulations show semiquantitative agreement
with experiments, dependent on assumptions of the ratio between translational
and rotational diffusion. A scaling law that previously was found
to successfully describe the behavior of globular proteins was found
to be inadequate for the IDP, Histatin 5. Analysis of the MD simulations
show that the width of the distribution with respect to diffusion
is not a simplistic mirroring of the distribution of radius of gyration,
hence, displaying the particular features of IDPs that need to be
accounted for.