For mammals, enormous amounts of visual information are processed by neurons of the visual nervous system. The research of the direction selectivity is of great significance and local direction-selective ganglion neurons have been discovered. However, research is still at the one dimensional level and concentrated on a single cell. It remains challenging to explain the function and mechanism of the overall motion direction detection. In our previous papers, we have proposed a motion direction detection mechanism on the two dimensional level to solve these problems. The previous studies did not take into account that the information in the left and right retina is different and cannot be used to detect the three dimensional motion direction. Further effort is required to develop a more realistic system in three dimensions. In this paper, we propose a new three-dimensional artificial visual system to extend motion direction detection mechanism into three dimensions. We assumed that a neuron could detect the local motion of a single voxel object within three dimensional space. We also took into consideration that the information of the left and right retinas is different. Based on this binocular disparity, a realistic motion direction mechanism for three dimensions was established: the neurons received signals from the primary visual cortex of each eye and responded to motion in specific directions. There are a series of local direction-selective ganglion neurons arrayed on the retina by a logical AND operation. The response of each local direction detection neuron will be further integrated by the next neural layer to obtain the global motion direction. We carry out several computer simulations to demonstrate the validity of the mechanism. It shows that the proposed mechanism is capable of detecting the motion of complex three dimensional objects, which is consistent with most known physiological experimental results.