The Centro Nacional de Metrología is developing a reference calorimeter to measure the superior calorific value of natural gas in collaboration with the Instituto Tecnológico de Celaya. We present the study of the combustion chamber for two formulations a steady state (already published) against the transient state. The study of the combustion chamber is performed employing computational fluid dynamics (CFD) through FLUENT®. For this work, specific parameters were set to define and simulate the combustion process involving the exchange of energy, momentum and mass transfer. In this work, we present simulations performed in steady and transient state, for which was used the Eddy Dissipation Model (EDM). Is shown the simulation of two geometries for the combustion chamber; one cylindrical body a hemispherical lid and the other elliptical, which was proposed to increase the area to heat transfer to the surrounding medium, water in our case. The criterion for selection is the chamber that achieves the lowest temperature for waste combustion gases at the exit. Achieved by the cylindrical chamber with a hemispherical lid in the first 4 seconds with a difference of 0.4 °C lower than the elliptical chamber.