The detection of low-intensity light is a crucial issue in many aspects of science and technology. So far, the solution has involved extremely delicate and somewhat bulky devices, the photomultiplier tubes, providing high sensitivity but suffering from fragility and susceptibility to interference. The silicon photomultiplier (SiPM) is a solid-state photon detector that provides a new solution for a wide range of photometry applications in fields as diverse as medicine, biology, environmental science, chemistry, physics, and nuclear physics. SiPMs are on a par with conventional photomultiplier tubes (PMT) in terms of internal gain and photon detection efficiency, while they are undoubtedly superior in terms of mechanical robustness, compact size, electronic stability, low power consumption, and affordability. Our group has long been involved in ionizing radiation measurements based on light emitting sensors both for industrial nuclear technology applications and for hybrid diagnostic imaging techniques. In both cases, SiPMs offer the unquestionable advantages described in this review.