Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Wasted produce is a pertinent issue in agriculture, with billions of tons of produce going to waste even before it hits markets. Specifically, in Sub-Saharan Africa (SSA), nearly half of all produce is lost before market. To combat this, the Agricycle® passive solar drier was designed to provide a cost-effective method of drying fruit for preservation. Using a psychrometric chamber to simulate the SSA environment, vitamin C, total phenolic contents, and iron tests were conducted, along with microbial content determination, water content determination, dissolved solids testing, and color and microstructure analyses to validate passive solar drying, comparing the results to freeze-dried samples. Nutritional contents were comparable between fresh, freeze-dried, and solar-dried samples, with a loss in vitamin C (statistically significant), total phenolic contents, and dissolved solids during solar drying. The microbial analysis for solar-dried samples was below standard limits, and the water content in the solar-dried samples was ~10% w.b. (<20% w.b.) compared to ~3% w.b. of the freeze-dried samples. Although having comparable vitamin C, total phenolic contents, and iron values, freeze-dried and solar dried samples showed very different colors and microstructures based on colorimetry and SEM imaging. In conclusion, the Agricycle® passive solar drier is a promising alternative approach for food preservation.
Wasted produce is a pertinent issue in agriculture, with billions of tons of produce going to waste even before it hits markets. Specifically, in Sub-Saharan Africa (SSA), nearly half of all produce is lost before market. To combat this, the Agricycle® passive solar drier was designed to provide a cost-effective method of drying fruit for preservation. Using a psychrometric chamber to simulate the SSA environment, vitamin C, total phenolic contents, and iron tests were conducted, along with microbial content determination, water content determination, dissolved solids testing, and color and microstructure analyses to validate passive solar drying, comparing the results to freeze-dried samples. Nutritional contents were comparable between fresh, freeze-dried, and solar-dried samples, with a loss in vitamin C (statistically significant), total phenolic contents, and dissolved solids during solar drying. The microbial analysis for solar-dried samples was below standard limits, and the water content in the solar-dried samples was ~10% w.b. (<20% w.b.) compared to ~3% w.b. of the freeze-dried samples. Although having comparable vitamin C, total phenolic contents, and iron values, freeze-dried and solar dried samples showed very different colors and microstructures based on colorimetry and SEM imaging. In conclusion, the Agricycle® passive solar drier is a promising alternative approach for food preservation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.