This paper presents the development of a new Aerodynamic Ball Levitation Laboratory Plant at the Center of Modern Control Techniques and Industrial Informatics (CMCT&II). The entire design process of the plant is described, including the component selection process, the physical construction of the plant, the design of a printed circuit board (PCB) powered by a microcontroller, and the implementation of its firmware. A parametric mathematical model of the laboratory plant is created, whose parameters are then estimated using a nonlinear least-squares method based on acquired experimental data. The Kalman filter and the optimal state-space feedback control are designed based on the obtained mathematical model. The designed controller is then validated using the physical plant.