The direct measurements of the cosmic electron-positron spectrum around 1 TeV made by DAMPE have induced many theoretical speculations about possible excesses in the data above the standard astrophysical predictions that might have the dark matter (DM) origin. These attempts mainly fall into two categories: i) DM annihilations (or decays) in the Galactic halo producing the broad spectrum excess; ii) DM annihilations in the nearby compact subhalo producing the sharp peak at 1.4 TeV. We investigate the gamma-ray emission accompanying e + e − production in DM annihilations, as well as various theoretical means to suppress the prompt radiation, such as specific interaction vertices or multi-cascade modes, and conclude that these attempts are in tension with various gamma-ray observations. We show that the DM explanations of the broad spectrum excess tend to contradict the diffuse isotropic gamma-ray background (IGRB), measured by Fermi-LAT, while the nearby subhalo scenario is constrained by nonobservation in the surveys, performed by Fermi-LAT, MAGIC and HESS. We also briefly review other types of gamma-ray constraints, which seem to rule out the DM interpretations of the DAMPE broad spectrum excess as well.