The MEMS microphone is a representative device among the MEMS family, which has attracted substantial research interest, and those tailored for human voice have earned distinct success in commercialization. Although sustained development persists, challenges such as residual stress, environmental noise, and structural innovation are posed. To collect and summarize the recent advances in this subject, this paper presents a concise review concerning the transduction mechanism, diverse mechanical structure topologies, and effective methods of noise reduction for high-performance MEMS microphones with a dynamic range akin to the audible spectrum, aiming to provide a comprehensive and adequate analysis of this scope.