The drilling operation in the roof bolting process, especially in hard rock, generates excessive respirable coal and quartz dusts, which could expose the roof bolting operator to continued health risks. Previous research has shown that the amount of respirable dust produced is dependent on the main drilling parameters, specifically the drilling rotational and penetration rate. In this paper, a roof bolter drilling control process was proposed to reduce the generation of respirable dust. Based on the analysis of laboratory drilling test results, a rational drilling control process (adjusting rotational and penetration rates) to achieve the optimal drilling parameter for different rock types was proposed. In this process, the ratio between specific energy and rock uniaxial compressive strength was used as the index to determine the optimal operation point. The recommended drilling operation range for the rock type used in the experiment was provided, and the reduction in respirable dust generation was demonstrated. By following this control process, the drilling efficiency can be monitored in real time, so the system can stay in a relatively high-energy efficiency with less respirable dust production from the drilling source. This algorithm is targeted to be incorporated into the current roof bolter drilling control system for drilling automation so that a safe and productive drilling operation can be conducted in a healthy working environment.