Air-mist jet is increasing in number of facilities for a variety of applications in surface cooling. It can provide a good balance of high heat removal capability. The present study focused on the velocity characteristics of the air-mist jet produced by a fan-shaped nozzle under different operating conditions during secondary cooling of continuous casting. To this end, the authors conducted experimental research, employing optical techniques, i.e., particle image velocimetry (PIV) and laser Doppler velocimetry (LDV) to measure a fanlike flow field in an air-mist jet. However, the researchers observed different results between the PIV and LDV measurements, mainly at the outlet of the nozzle region. This article identifies velocity characteristics of air-mist jet during secondary cooling of continuous casting, which is divided into two parts for velocity distribution structure of air-mist jet, and self-similar and well described by a Gaussian distribution for the whole flow field. The study provides a suggestion to optimise the flow field of a fanlike air-mist nozzle for different working conditions. Furthermore, the behavior of gas-liquid two-phase flow can be understood by examining the difference in velocity characteristics between the PIV and LDV measurements of the air-mist jet.