Within-class spectral variation and between-class spectral confusion in remotely sensed imagery degrades the performance of built-up area detection when using planar texture, shape, and spectral features. Terrain slopes and building heights extracted from auxiliary data, such as Digital Surface Models (DSMs) however, can improve the results. Stereo imagery incorporates height information unlike single remotely sensed images. In this study, a new Stereo Pair Disparity Index (SPDI) for indicating built-up areas is calculated from stereo-extracted disparity information. Further, a new method of detecting built-up areas from stereo pairs is proposed based on the SPDI, using disparity information to establish the relationship between two images of a stereo pair. As shown in the experimental results for two stereo pairs covering different scenes with diverse urban settings, the SPDI effectively differentiates between built-up and non-built-up areas. Our proposed method achieves higher accuracy built-up area results from stereo images than the traditional method for single images, and two other widely-applied DSM-based methods for stereo images. Our approach is suitable for spaceborne and airborne stereo pairs and triplets. Our research introduces a new effective height feature (SPDI) for detecting built-up areas from stereo imagery with no need for DSMs.