With the sequence of the mouse genome known, it is now possible to create or identify mutations in every gene to determine the molecules necessary for normal development. Consequently, there is a growing need for advanced phenotyping tools to best understand defects produced by altering gene function. Perhaps nothing is more satisfying than to directly observe a process in action; to disturb it and see for ourselves how the process changes before our very eyes. No doubt, this desire is what drove the invention of the very first microscopes and continues to this day to fuel progress in the field of biological imaging. Because mouse embryos are small and develop embedded within many tissue layers within the nurturing environment of the mother, directly observing the dynamic, micro-and nanoscopic events of early mammalian development has proven to be one of the greater challenges for imaging scientists. Here, I will review some of the imaging methods being used to study mouse development, highlighting the results obtained from imaging.