Appropriate characterization of reservoir properties and investigation of the effect of these properties on microbial metabolism and oil recovery under simulated reservoir conditions can aid in development of a sustainable microbial enhanced oil recovery (MEOR) process. Our present study has unveiled the promising potential of the hyperthermophilic archaeon, identified as Thermococcus petroboostus sp. nov. 101C5, to positively influence the microenvironment within simulated oil reservoirs, by producing significant amounts of metabolites, such as biosurfactants, biopolymers, biomass, acids, solvents, gases. These MEOR desired metabolites were found to cause a series of desirable changes in the physicochemical properties of crude oil and reservoir rocks, thereby enhancing oil recovery. Furthermore, our study demonstrated that the microbial activity of 101C5 led to the mobilization of crude oil, consequently resulting in enhanced production rates and increased efficiency in simulated sand pack trials. 101C5 exhibited considerable potential as a versatile microorganism for MEOR applications across diverse reservoir conditions, mediating significant light as well as heavy oil recovery from Berea/carbonaceous nature of rock bearing intergranular/vugular/fracture porosity at extreme reservoir conditions characterized by high temperature (80–101 °C) and high pressure (700–1300 psi). Core flood study, which truly mimicked the reservoir conditions demonstrated 29.5% incremental oil recovery by 101C5 action from Berea sandstone at 900 psi and 96 °C, underscoring the potential of strain 101C5 for application in the depleted high temperature oil wells.