2016
DOI: 10.18178/ijmerr.5.1.47-51
|View full text |Cite
|
Sign up to set email alerts
|

Development of Mobile Robot SLAM Based on ROS

Abstract: With the continuous development of intelligent robotics, intelligent robot can realize autonomous moving. Robot simultaneous localization and mapping technology arises at the historic moment. Adaptive monte carlo localization algorithm was used for mobile robot pose estimation. Bayesian algorithm was used to building grid map. The robot moving path was computed by the path planner algorithm. The mobile robot follows the path and realizes autonomous moving function. ROS platform was used for tracked mobile robo… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
4
0
2

Year Published

2019
2019
2024
2024

Publication Types

Select...
5
3
2

Relationship

0
10

Authors

Journals

citations
Cited by 18 publications
(6 citation statements)
references
References 10 publications
0
4
0
2
Order By: Relevance
“…Terdapat pula penelitian yang dilakukan secara riil seperti pada penelitian [14] yang membahas robot yang dapat bergerak secara otonom menggunakan ROS dan algoritma SLAM. Robot yang digunakan adalah tracked mobile robot.…”
Section: Kajian Pustakaunclassified
“…Terdapat pula penelitian yang dilakukan secara riil seperti pada penelitian [14] yang membahas robot yang dapat bergerak secara otonom menggunakan ROS dan algoritma SLAM. Robot yang digunakan adalah tracked mobile robot.…”
Section: Kajian Pustakaunclassified
“…В то же время можно отслеживать местоположение или движение камеры или датчиков робота в этом пространстве. Следовательно, конкретный объект, движущийся в этом пространстве, можно описать достаточно ясно и с большой точностью [2][3][4][5]. В настоящее время Slam используется на многих рынках и во многих приложениях, существующих в мире.…”
Section: Slamunclassified
“…algorithm (Whyte and Magazine, 2006) is widely used in current robotic navigation (An et al, 2016, Gao et al, 2017…”
Section: Simultaneous Localization and Mapping (Slam)mentioning
confidence: 99%