BACKGROUND: A new layered double hydroxide (LDH) material has been developed through a pioneering approach, with the goal of being an alternative adsorbent for the separation of biomolecules, such as clavulanic acid (CA).
RESULTS: Zn 2 Cr-CA hybrid LDH assemblies were prepared through a coprecipitation method to evaluate the affinity between the CA molecule and the interlayer sites. The resulting inorganic-organic 'sandwich' structure was characterized by a combination of techniques showing an expansion of the layered structure from 0.78 nm up to values of 2.30 nm upon CA intercalation. Isotherm studies were carried out to evaluate the adsorption capacity of LDH towards CA. The Freundlich adsorption model was found to fit the experimental data well, indicating a relatively large adsorption capacity for the adsorbent Zn 2 Cr-NO 3 , as high as 73.63, 128.76, and 229.62 mg 1-nF L nF g −1 at 20, 30, and 35 ∘ C, respectively. CONCLUSION: Zn 2 Cr-NO 3 adsorption capacity was not influenced by the presence of amino acids, thus underlining that it is a LDH composition which may be a suitable alternative for the separation of CA. LDH micro-particles were additionally encapsulated with calcium alginate gel (LDH ME ) and characterized for particle average diameter (d p = 171 m), bulk density ( bulk = 0.63 g cm −3 ), particle density ( p = 2.2 g cm −3 ), particle porosity ( p = 0.71) and bed porosity ( B = 0.40). The application of LDH ME in the separation of CA from complex mixtures, containing tyrosine and proline, was considered satisfactory based on purification factors of about 2.32 and degrees of purity higher than 99%.
Analytical methodsThe CA concentrations were determined by spectrophotometric analysis of the product of the reaction of CA with imidazole. 31