Soluble aniline tetramer (AT) was successfully prepared by chemical oxidation method. Fourier transform infrared spectroscopy (FTIR) and ultraviolet-visible spectroscopy (UV-vis) were used to characterize its structure. The redox behavior of AT was identified through the electrochemical cyclic voltammetry studies. Then, the epoxy coating was prepared by using AT as inhibitor. Its anticorrosive property was evaluated by salt solution resistance test, polarization curve, and electrochemical impedance spectroscopy (EIS). Salt solution resistance test, polarization curves, and EIS measurements indicate that the obtained epoxy anticorrosive coating, containing 1.0% AT, exhibits remarkably enhanced corrosion protection properties on Q235 steel electrodes as compared to pure epoxy anticorrosive coating without AT. The significantly improved anticorrosion performance may be owing to the redox behavior of the AT, adsorption and inhibition effect of AT on Q235 steel surface, as well as synergistic curing effect by AT and polyamide.