Naringenin (NAR), a flavonoid mainly found in citrus and grapefruits, has proven anti-cancer activities. However, the poor water solubility and low bioavailability of NAR limits its use as a therapeutic agent. The aim of this study was to develop and optimize stable naringenin nanoemulsions (NAR-NE) using a Box–Behnken experimental design to obtain a formulation with a higher efficiency. Anticancer activity of optimized NAR-NE was evaluated in A549 lung cancer cells using cell viability, flow-cytometric assays, and enzyme-linked immunosorbent assay. The stabilized nanoemulsion, which showed a spherical surface morphology, had a globule size of 85.6 ± 2.1 nm, a polydispersity index of 0.263 ± 0.02, a zeta potential of −9.6 ± 1.2 mV, and a drug content of 97.34 ± 1.3%. The NAR release from the nanoemulsion showed an initial burst release followed by a stable and controlled release for a longer period of 24 h. The nanoemulsion exhibited excellent thermodynamic and physical stability against phase separation and storage. The NAR-NE showed concentration-dependent cytotoxicity in A549 lung cancer cells, which was greater than that of free NAR. The percentage of apoptotic cells and cell cycle arrest at the G2/M and pre-G1 phases induced by NAR-NE were significantly higher than those produced by free NAR (p < 0.05). NAR-NEs were more effective than the NAR solution in reducing Bcl2 expression, while increasing pro-apoptotic Bax and caspase-3 activity. Therefore, stabilized NAR-NE could be a suitable drug delivery system to enhance the effects of NAR in the treatment of lung cancer.