Abstract. The novel bisphthalonitrile containing benzoxazine (BPNBZ) has been synthesized using bisphenol-A, 4-aminophenoxylphthalonitrile and paraformaldehyde. The structure of the monomer was supported by FTIR spectroscopy, 1 H-NMR, and 13 C-NMR spectra, which have exhibited that the reactive benzoxazine ring and cyano groups exist in molecular structure of BPNBZ. The cure reaction of BPNBZ was monitored by the disappearance of the nitrile peak and the tri-substituted benzene ring that is attached with oxazine ring peak at 2231, 951 cm -1 . The thermal polymerization of the BPNBZ was studied by differential scanning calorimetry (DSC) and dynamic rheometer. It was shown that the bisphthalonitrile containing benzoxazine had completely cured with two-stage polymerization mechanisms according to oxazine ring-opening and phthalonitrile ring-forming. The thermal decomposition behaviors of the polymer were examined by thermogravimetry analysis (TGA) in nitrogen and in air. The materials achieve char yields above 73% under nitrogen at 800°C and above 78% under air at 600°C, which exhibited the cured resin has good thermal stability and thermo-oxidative stability.