The quaternary Ti-Nb-Zr-Ta (TNZT) alloy was successfully cast-fabricated with the objective to be used in the medical field. Samples’ microstructure was compared to CP-Ti and Ti-6Al-4V (control samples) and related to corrosion, ion release and biological properties. As-cast TNZT was formed with large β grain sizes (285 µm) compared to the ultrafine α grain sizes of CP-Ti (11 µm) and the α + β ultrafine grain sizes of 1.45 µm and 0.74 µm. Hardness and flexural elastic moduli (94 HV and 43 GPa) came close to the biological structures, such as dentin and enamel values. The ion release mechanism of as-cast TNZT was significantly lesser than CP-Ti and Ti-6Al-4V, which can be related to the difference in samples’ grain sizes and chemical compositions. However, the corrosion rate was higher than for the control samples; this way offers corrosion properties inferior with respect to the properties obtained in the reference materials. Biological assays demonstrated that the two-cell (hDPSCs and MG-63) lineage studied presented good adhesion and capability to differentiate in bone cells on the as-cast TNZT surface, and no cytotoxicity effects were found. Details and reasons based on samples’ microstructure are discussed.