A centrifugal blood pump with a magnetically suspended impeller has been developed. It has a single inlet and outlet, and it generates centrifugal forces by the rotating impeller. The fluid-dynamical design for inflow and outflow through the impeller leads to elimination of the axial force and unbalanced radial force acting on the impeller. Consequently, three-component control systems, instead of five-component ones, are enough to position the impeller. The magnetically suspended impeller rotates by the magnetic coupling with the permanent magnets embedded in the outer rotator of the motor. This pump has enough performance to function as a blood pump. Further research on the null-power magnetic suspension and the generation of an efficient rotating magnetic field is in progress.