Abstract-A large aperture quasi-optical dielectric lens antenna for passive imaging at W-band frequency is proposed. The lens is designed to obtain best resolution at a designate distance of 3.5 m from it. The lens has biconvex aspheric surface to achieve low aberration. The initial parameters of the optical path are obtained with Gaussian beam method, and then the optical simulator ZEMAX is applied to optimize the shape of the lens which improves design efficiency greatly. A hybrid numerical method is used to analyze near field distribution of the lens, and the final design of the lens is evaluated and determined by the results. The method is the combining of ANSOFT HFSS software, ray tracing method and integration algorithm based on Huygens' Principle. It is feasible and efficient for the analysis of various lens antennas, such as large aperture lens antennas which are difficult to be simulated by commercial electromagnetic simulation software. The lens is fabricated with HDPE. Experimental results show that its 3 dB beam size is 29 mm at distance of 3.5 m, which is in good agreement with theoretical calculation. The measured patterns on the image plane show that the lens has 0.3 dB decrease of field intensity in field view of 690 mm. Imaging result shows that the lens is a good candidate for focal plane imaging.