Photobase generators are species that allow the photocatalysis of various reactions, such as thiol‐Michael, thiol‐isocyanate, and ring‐opening polymerization reactions. However, existing compounds have complex syntheses and low quantum yields. To overcome these problems, photobase generators based on the photodecarboxylation reaction were developed. We synthesized and studied the photochemistry and photophysics of two xanthone photobase, their carboxylic acid precursors, and their photoproducts to understand the photobase generation mechanism. We determined accurate quantum yields of triplet states and photobase generation. The effect of the intermediate radical preceding the base release was demonstrated. We characterized the photophysics of the photobase by femtosecond spectroscopy and showed that the photodecarboxylation process occurred from the second excited triplet state with a rate constant of 2.2×109 s−1.