For species with complex life cycles, transitions between life stages result in niche shifts that are often associated with evolutionary trade-offs. When conditions across life stages are unpredictable, plasticity in niche shift timing may be adaptive; however, factors associated with clutch identity (e.g., genetic or maternal) may influence the effects of such plasticity. The red-eyed treefrog (Agalychnis callidryas) is an ideal organism for investigating the effects of genetics and life stage switch point timing because embryos exhibit adaptive phenotypic plasticity in hatching time. In this study, we evaluated the effects of experimentally manipulated hatching time and clutch identity on antipredator behavior of tadpoles and on developmental traits of metamorphs, including larval period, mass, SVL, and jumping ability. We found that in the presence of dragonfly nymph predator cues at 21 days post-oviposition, tadpoles reduced both their activity level and height in the water column. Furthermore, early-hatched tadpoles were less active than late-hatched tadpoles of the same age. This difference in behavior patterns of early- and late-hatched tadpoles may represent an adaptive response due to a longer period of susceptibility to odonate predators for early-hatched tadpoles, or it may be a carry-over effect mediated by early exposure to an environmental stressor (i.e., induction of early hatching). We also found that hatching time affected both behavioral traits and developmental traits, but its effect on developmental traits varied significantly among clutches. This study shows that a single early-life event may influence a suite of factors during subsequent life stages and that some of these effects appear to be dependent on clutch identity. This interaction may represent an evolutionary response to a complex life cycle and unpredictable environments, regardless of whether the clutch differences are due to additive genetic variance or maternal effects.