This study aimed to identify and characterize a pectinase-producing novel yeast from the fermented juice of Phyllanthus emblica and apply the enzyme for fruit juice clarification. Among the five pectinase-producing yeasts, isolate-1 exhibited the highest pectinase activity and was further used in this study. Based on morphological, physiological, and 18SrRNAanalyses, isolate-1 was recognized as a new strain sharing 99% sequence homology with other Meyerozyma strains and was thus designated as Meyerozyma sp. VITPCT75. The strain produced pectinase optimally at a temperature and pH of 25oC and 7, respectively. Maximum pectinase production was observed after 4-days incubation. The enzyme exhibited optimum activity at the temperature of 25 °C and pH 7.0. The enzyme was more stable at a temperature and pH of 20 °C and 7, respectively. Storage stability studies revealed that the enzyme was stable at -20 °C. The cell-free supernatant was partially purified using ammonium sulfate and solvent precipitation. Acetone at a concentration of 20% assured an adequate partial purification. The molecular weight of pectinase was determined as 6 kDa. The enzymatic metal ion preference-related studies revealed that Ca²z, Kz, Cu²z, Fe²z, and Ba²z ions enhanced, Ni²z ions moderately inhibited, and Mn²z ions intensely inhibited the enzymatic activity. Neither Na+ and Mg2+ ions nor EDTA affected the enzyme activity. When subjected to fruit juice clarification, the enzyme significantly reduced the viscosity of the juice.