In recent years, the functionality of myoelectric prosthetic hands has improved as motors have become smaller and controls have become more advanced. Attempts have been made to reproduce the rotation and flexion of the wrist by adding degrees of freedom to the wrist joint. However, it is still difficult to fully reproduce the functionality of the wrist joint owing to the weight of the prosthesis and size limitations. In this study, we developed a new socket and prosthetic hand control system that does not interfere with the wrist joint motion. This allows individuals with hand defects who previously used prosthetic hands with fixed wrist joints to freely use their remaining wrist functionality. In the pick-and-place experiment, where blocks were moved from higher to lower locations, we confirmed that the proposed system resulted in a lower elbow position compared with the traditional prosthesis, and the number of blocks transported increased. This significantly reduced the compensatory motion of the elbow and improved the user’s performance compared with the use of a conventional prosthetic hand. This study demonstrates the usefulness of a new myoelectric prosthetic hand that utilizes the residual functions of people with hand deficiencies, which have not been utilized in the past, and the direction of its development.