Cariprazine represents a new generation of antipsychotic medication, characterized by its heightened affinity for the D3 receptor. It has recently obtained approval as an adjunctive treatment option for patients diagnosed with major depressive disorder. In this study, a novel approach utilizing fluorescence spectroscopy was developed to analyze cariprazine. The methodology involves the transformation of cariprazine into a fluorescent compound by means of chemical derivatization with 4‐chloro‐7‐nitrobenzo‐2‐oxa‐1,3‐diazole (NBD‐Cl). Following excitation at 470 nm, the fluorescent derivative displayed peak fluorescence emission at 550 nm. The factors influencing the derivatization process were optimized. Upon reaching the optimal reaction conditions, a linear correlation (r2 = 0.9995) was observed between the fluorescence intensity and concentrations of cariprazine ranging from 20 to 400 ng/ml. Detection and quantitation limits were determined to be 5.85 and 17.74 ng/ml, respectively. The approach was accurate and precise, with percent recovery values ranging from 98.14% to 99.91% and relative standard deviations of less than 2%. Application of the method to the analysis of cariprazine in bulk and commercial capsules forms yielded accurate results. Moreover, adherence to environmentally friendly analytical practices was evident through alignment with the principles of green analysis, as demonstrated by the analytical eco‐scale, AGREE, and GAPI greenness assessment tools.