Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Vibration data acquisition has comprehensive applications such as machine monitoring, seismic data gathering. This paper presented a design of a vibration monitoring system based on an ICP acceleration sensor and a Cortex-M3 microcontroller. The sensor modulation circuit is illustrated in detail including the constant current source and filtering. An evaluation on the prototype is developed and the results show that our design can successfully monitor the vibration situations of interested objects.
Vibration data acquisition has comprehensive applications such as machine monitoring, seismic data gathering. This paper presented a design of a vibration monitoring system based on an ICP acceleration sensor and a Cortex-M3 microcontroller. The sensor modulation circuit is illustrated in detail including the constant current source and filtering. An evaluation on the prototype is developed and the results show that our design can successfully monitor the vibration situations of interested objects.
The global seismic activity is extensively studied and well characterized by seismic networks focused on the seismic hazards derived from earthquakes. However, a specific study on volcano seismicity is not widespread, due to the wide variety of volcanic signals as well as the long periods of quiescence of many volcanoes. Seismic array technology emerged as a method for nuclear tests monitoring, however, it soon became an important tool for the analysis and location of volcano seismic signals thanks to a wide variety of processing techniques. From the techniques applied in array processing, in this PhD Thesis the beamforming algorithm has been chosen. In classical seismic arrays, the analog signals from each sensor are wired transmitted to the central acquisition system, resulting in a decrease of quality of the processed signal. Central node must perform signal acquisition from all sensors, establish a time control through the use of a GPS, store data and transmit them. Moreover, the volcanic monitoring equipment could be destroyed, or have depleted its power source, thus, it becomes evident the need of very low cost and high autonomy equipments, which currently do not exist. In this way, a seismic array has been designed, consisting of a wireless seismic network that allows any array topology, removing the need of any wire connection. It is a significant step forward over existing devices, due to involved cost reduction and autonomy obtained, that allow fast deployment without the need of large investments. These equipments present high versatility, thanks to the use of the latest technologies in both hardware and software, using an open source operating system with embedded Linux where all software is free. This allows us to configure and display recorded data on real time, through a webpage and an instant messaging application, in order to be able to track the activity at any moment and from everywhere. Array localization techniques are based on the search for the maximum coherence of the recorded signals by each sensor of the array, improving the quality of the seismic signal by coherently adding the signal of each element. This implies that the most important part in the data acquisition is to obtain the time delay of each signal accurately. Synthetic tests show that a delay in the synchronism of one millisecond implies an error of less than one degree in determining the arrival angle. In order to increase the accuracy of time synchronization, it has been experimented in the laboratory with the IEEE 1588 PTP standard, using Xbee PRO commercial wireless modules, achieving synchronization of the order of microseconds, well above the data analysis requirements. The final result of this Thesis has allowed the development of a compact seismic acquisition system with low-power consumption (515,24 mW), low cost (at least 10% below average commercial systems), low-noise (2-bit A/D 24) and lightweight, making easier the possibility to develop a significant number of these devices. The equipment has been checked in the laboratory through automated measurement systems and calibration procedures. It has been also tested in different field campaigns where wireless seismic array was compared to a wired array of the IGN (as a reference), both using the MARK L4 seismic sensor (vertical component, and 1second natural period), being the signal-to-noise ratio of both equipment identical. Taking into account the tolerance of the A/D clock of the different stations in the array, it has been verified that in the worst case the synchronization error was 650 µs. La actividad sísmica a nivel global está ampliamente estudiada y queda bien caracterizada mediante las redes de sismómetros enfocadas al riesgo sísmico derivado de los terremotos. Sin embargo, el estudio específico de la sismicidad volcánica está poco extendido, debido a la gran variedad de señales volcánicas y a los largos periodos de inactividad que pueden presentar los volcanes. A pesar de que la tecnología de arrays sísmicos (antenas sísmicas) surgió para la vigilancia de explosiones nucleares, pronto se convirtió en una herramienta de gran utilidad en el análisis y localización de señales volcánicas gracias a su gran variedad de técnicas de procesado. La diferencia principal entre un array y una red de sismómetros, se encuentra en las diversas técnicas de análisis aplicadas a las señales sísmicas registradas por los sismómetros individualmente y en su conjunto. De las distintas técnicas que se utilizan en el procesado de arrays sísmicos se ha escogido la de formación del haz (beamforming). En los arrays sísmicos actuales, las señales analógicas procedentes de cada sensor son llevadas por cable hasta el sistema de adquisición central, con la consiguiente merma en la calidad de la señal procesada. El nodo central debe realizar la adquisición de la señal de todos los sensores, establecer un control del tiempo mediante el uso de un GPS, almacenar los datos, transmitirlos, etc. A esto hay que añadir la posibilidad de que los equipos de monitorización volcánica sean destruidos, o que se agote la fuente de energía, por tanto se hace evidente la necesidad de disponer de equipos de muy bajo coste y gran autonomía, que actualmente no existen. Siguiendo esta línea de trabajo se ha diseñado una antena sísmica formada por redes de sensores inalámbricos que permitirá establecer cualquier topología de array, eliminando la necesidad de interconexión mediante cables. Esto representará un avance significativo respecto a los dispositivos existentes, tanto por la reducción de costes que implica, como por la autonomía que se consigue, lo cual permite un despliegue rápido sin necesidad de realizar una gran inversión económica. Estos equipos presentan una gran versatilidad, gracias al uso de las últimas tecnologías tanto en hardware como en software, utilizando un sistema abierto de tipo Linux embebido donde todo el software utilizado es libre. Esto permite configurar y visualizar los datos que se están registrando en tiempo real, a través de una página web y de una aplicación de mensajería instantánea, con el fin de poder realizar un seguimiento de la actividad en cualquier parte e instante. Las técnicas de localización con array se basan en la búsqueda de la máxima coherencia de las señales registradas por los distintos sensores del array, mejorando la calidad de la señal sísmica mediante la suma de la señal de cada elemento de forma coherente. Esto implica que la parte más importante en la adquisición de datos sea obtener los retardos de cada señal de forma exacta. Pruebas sintéticas muestran que un milisegundo de retardo de sincronismo deriva en un error en la determinación del ángulo de llegada por debajo de un grado. Para aumentar la precisión de sincronización de tiempo, se ha experimentado en el laboratorio con el estándar IEEE1588 PTP empleando módulos comerciales inalámbricos Xbee PRO, consiguiendo sincronización del orden del microsegundo, superiores a los requisitos del análisis de datos de array. El resultado final del trabajo de tesis ha permitido la realización de un equipo de adquisición sísmica compacto de bajo consumo (515,24mW) y coste (inferior al 10% sistemas comerciales), inalámbrico, de bajo ruido (2 bits en A/D de 24) y ligero, facilitando la posibilidad de disponer de un número significativo de unidades. El equipo ha sido validado en el laboratorio mediante sistemas de medida automatizados y procedimientos de calibración. Además se ha probado en diferentes campañas comparando el array sísmico inalámbrico desarrollado con un array de referencia cableado del IGN, ambos utilizando sensores sísmicos MARK L4 de 1 componente (vertical) y 1 segundo, siendo la relación señal/ruido de ambos equipos idéntica. Atendiendo a la tolerancia del reloj de los A/D de las diferentes estaciones del array, se ha verificado que en el peor de los casos el error de sincronismo es de 650 μs.
The performance of seismic exploration instruments directly affects the quality of acquired seismic data as well as the efficiency of seismic survey operation. Consequently, they play a pivotal role in oil/gas and mineral resource exploration. Compared with traditional cabled seismic acquisition systems, nodal seismic acquisition systems have the advantages of light weight, small size, low capital and operational cost, reduced health safety and environment risk and strong adaptability to complex terrain environment. Therefore, they have been widely used in seismic exploration and have shown a trend of accelerated development. The major manufacturers have carried out research and development of nodal instruments, and various types of nodal seismographs have appeared. Based on the investigation of influential nodal seismographs, we summarize the research status of nodal seismographs. Based on different wireless monitoring capabilities and data harvesting modes, we classify the nodal seismographs into a shoot-blind system, semi-blind system, real-time system and enhanced real-time system. We discuss structural principles and key technologies of the four types of nodal seismographs, analyze their characteristics and predict their future development directions. Focusing on node data quality monitoring, we discuss the application of communication technologies, such as Bluetooth, Wi-Fi, ZigBee, Long Term Evolution, and satellites in nodal seismographs in detail. Furthermore, we analyze and evaluate three main networking architectures including planar multi-hop networks, hierarchical cluster networks and hybrid networks, and sum up the research progress of wireless routing algorithms and large-scale seismic data real-time harvesting methods. Finally, the latest applications of nodal seismographs in energy and mineral resource exploration, geological environment monitoring, urban subsurface space survey and novel seismic technologies are covered. As research on the application of micro-electro-mechanical systems technology, cloud computing, 5G, Internet of Things, edge computing, machine learning and robotics in nodal systems deepens, the performance of nodal seismographs will be greatly promoted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.