The exceptional corrosion resistance and combined physical and chemical self-cleaning capabilities of superhydrophobic photocatalytic coatings have sparked significant interest among researchers. In this paper, we propose an economical and eco-friendly superhydrophobic epoxy resin coating that incorporates SiO2@CuO/HDTMS nanoparticles modified with Hexadecyltrimethoxysilane (HDTMS). The application of superhydrophobic coatings effectively reduces the contact area between the metal surface and corrosive media, leading to a decreased corrosion rate. Additionally, the incorporation of nanomaterials, exemplified by SiO2@CuO core–shell nanoparticles, improves the adhesion and durability of the coatings on aluminum alloy substrates. Experimental data from Tafel curve analysis and electrochemical impedance spectroscopy (EIS) confirm the superior corrosion resistance of the superhydrophobic modified aluminum alloy surface compared to untreated surfaces. Estimations indicate a significant reduction in corrosion rate after superhydrophobic treatment. Furthermore, an optical absorption spectra analysis of the core–shell nanoparticles demonstrates their suitability for photocatalytic applications, showcasing their potential contribution to enhancing the overall performance of the coated surfaces. This research underscores the promising approach of combining superhydrophobic properties with photocatalytic capabilities to develop advanced surface modification techniques for enhanced corrosion resistance and functional properties in diverse industrial settings.