This study investigates the influence of various anodic oxidation parameters on the photocatalytic activities of the nanostructured titanium dioxide (TiO2) films. TiO2 films were prepared by anodic oxidation of titanium substrate using 1 M Na2SO4 / 5 wt. % NH4F electrolyte, and then annealed at 500 °C. Anatase appears in all calcined samples. The anodic oxidation process was performed in two steps at different voltages (5–80 V) and times (15–480 min) to reveal the relationship between the surface morphologies, wettability and photocatalytic properties. The results showed that the voltage and anodization time can play important role in the surface morphology of nanostructured TiO2 films and thus in various properties. While 40 V showed the most efficient photocatalytic degradation among voltage values, 60 min was the most efficient time for photocatalytic degradation efficiency and lowest contact angle. In addition, a pore area fraction of 39.54%, equal diameter of 96.81 nm, and circularity of 66.7% were obtained from image analysis of the 60-min anodized sample. While increasing the voltage and time benefited up to a point in terms of photocatalytic efficiency, changes in morphology had a negative effect after a point. At low voltage and time values, small pore diameters result in low photocatalytic properties. This titania can be readily utilize to meet application expectations in areas such as gas sensors, photocatalysis and photovoltaic cells.