Purpose
Limited facilities operating and modernization budgets require organizations to carefully identify, prioritize and authorize projects to ensure allocated resources align with strategic objectives. Traditional facility prioritization methods using risk matrices can be improved to increase granularity in categorization and avoid mathematical error or human cognitive biases. These limitations restrict the utility of prioritizations and if erroneously used to select projects for funding, they can lead to wasted resources. This paper aims to propose a novel facility prioritization methodology that corrects these assessment design and implementation issues.
Design/methodology/approach
A Mamdani fuzzy logic inference system is coupled with a traditional, categorical risk assessment framework to understand a facilities’ consequence of failure and its effect on an organization’s strategic objectives. Model performance is evaluated using the US Air Force’s facility portfolio, which has been previously assessed, treating facility replicability and interruptability as minimization objectives. The fuzzy logic inference system is built to account for these objectives, but as proof of ease-of-adaptation, facility dependency is added as an additional risk assessment criterion.
Findings
Results of the fuzzy logic-based approach show a high degree of consistency with the traditional approach, though the value of the information provided by the framework developed here is considerably higher, as it creates a continuous set of facility prioritizations that are unbiased. The fuzzy logic framework is likely suitable for implementation by diverse, spatially distributed organizations in which decision-makers seek to balance risk assessment complexity with an output value.
Originality/value
This paper fills the identified need for portfolio management strategies that focus on prioritizing projects by risk to organizational operations or objectives.