2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2011
DOI: 10.1109/iembs.2011.6090855
|View full text |Cite
|
Sign up to set email alerts
|

Development of the boston retinal prosthesis

Abstract: A small, hermetic, wirelessly-controlled retinal prosthesis was developed for pre-clinical studies in Yucatan mini-pigs. The device was implanted on the outside of the eye in the orbit, and it received both power and data wirelessly from external sources. The prosthesis drove a sub-retinal thin-film array of sputtered iridium oxide stimulating electrodes. The implanted device included a hermetic titanium case containing the 16-channel stimulator chip and discrete circuit components. Feedthroughs in the hermeti… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
12
0
1

Year Published

2012
2012
2024
2024

Publication Types

Select...
6
3
1

Relationship

0
10

Authors

Journals

citations
Cited by 19 publications
(14 citation statements)
references
References 18 publications
0
12
0
1
Order By: Relevance
“…Hier liegen die Reizelektroden im Subretinalraum. Eine Kamera fängt das Bild ein, Stimulationspulse werden berechnet und die Information wird mittels Hochfrequenzübertragung an das Implantat gesendet [30]. Leider gibt es keine aktuelleren konkreten Informationen oder Daten zum Stand des Projekts.…”
Section: Boston Retina Implantunclassified
“…Hier liegen die Reizelektroden im Subretinalraum. Eine Kamera fängt das Bild ein, Stimulationspulse werden berechnet und die Information wird mittels Hochfrequenzübertragung an das Implantat gesendet [30]. Leider gibt es keine aktuelleren konkreten Informationen oder Daten zum Stand des Projekts.…”
Section: Boston Retina Implantunclassified
“…Visual prostheses are being developed by numerous groups around the world as a strategy to restore vision to patients affected by neural forms of blindness. [1][2][3][4][5][6][7][8][9][10][11][12][13][14][15][16][17][18][19][20] Each of these approaches seeks to bypass damaged or dysfunctional nerve tissue to deliver visually relevant neural stimulation along surviving visual pathways. [21][22][23][24][25] The most significant challenge for any neurosensory prosthesis is achieving a biocompatible interface in which mechanical and electrochemical damage are minimized to increase the potential for psychophysical benefit.…”
Section: Introductionmentioning
confidence: 99%
“…3 Recent developments of low power consumption devices enabled the realization of wireless tissue and in-body implants. The possibility to address implants wirelessly extended their application potential enormously, with numerous systems already available, including drug-delivery platforms, 4 cochlear implants, 5 pressure monitors in the brain cavity, 6 glaucoma sensors, 6,7 retinal implants, 6,8,9 brain-to-nerve interconnections for cerebral injuries 10 and direct control of prostheses. [11][12][13] There are several issues to consider while designing an in-body implant, for example, its power consumption, biocompatibility and the total size of the system.…”
Section: Introductionmentioning
confidence: 99%