2021
DOI: 10.15587/1729-4061.2021.242795
|View full text |Cite
|
Sign up to set email alerts
|

Development of the classifier based on a multilayer perceptron using genetic algorithm and cart decision tree

Abstract: The problem of developing universal classifiers of biomedical data, in particular those that characterize the presence of a large number of parameters, inaccuracies and uncertainty, is urgent. Many studies are aimed at developing methods for analyzing these data, among them there are methods based on a neural network (NN) in the form of a multilayer perceptron (MP) using GA. The question of the application of evolutionary algorithms (EA) for setting up and learning the neural network is considered. Theories of… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
1
0
1

Year Published

2023
2023
2024
2024

Publication Types

Select...
2
1

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(2 citation statements)
references
References 14 publications
0
1
0
1
Order By: Relevance
“…Metode ini telah diuji coba pada dataset kanker payudara dari UCI Machine Learning Repository dan terbukti efektif dalam mengatasi masalah tersebut (Tian & Zhang, 2022). Selain itu, sebuah studi menemukan bahwa metode Decision Tree sangat efektif dalam mendeteksi kanker payudara pada stadium awal dengan akurasi 100% pada uji coba pertama dan 97,9% pada uji coba kedua (Dobrovska & Nosovets, 2021).…”
Section: Pendahuluanunclassified
“…Metode ini telah diuji coba pada dataset kanker payudara dari UCI Machine Learning Repository dan terbukti efektif dalam mengatasi masalah tersebut (Tian & Zhang, 2022). Selain itu, sebuah studi menemukan bahwa metode Decision Tree sangat efektif dalam mendeteksi kanker payudara pada stadium awal dengan akurasi 100% pada uji coba pertama dan 97,9% pada uji coba kedua (Dobrovska & Nosovets, 2021).…”
Section: Pendahuluanunclassified
“…Several popular machine learning (ML) techniques for ID include Nave Bayes, the support vector machine (SVM), K-nearest neighbour (KNN), and neural networks. Classifier ensembles and single classifiers like CART and MLP [7] are evaluated using metrics and area under the receiver operating characteristic curve (AUC). IDS-ML offer a learning-based method for discovering attack classes based on learnt normal and attack behaviour.…”
Section: Introductionmentioning
confidence: 99%