Background
Obesity and neurodevelopmental delay are complex traits that often co-occur and differ between boys and girls. Prenatal exposures are believed to influence children’s obesity, but it is unknown whether exposures of pregnant mothers can confer a different risk of obesity between sexes, and whether they can affect neurodevelopment.
Methods
We analyzed data from 1044 children from the HELIX project, comprising 93 exposures during pregnancy, and clinical, neuropsychological, and methylation data during childhood (5–11 years). Using exposome-wide interaction analyses, we identified prenatal exposures with the highest sexual dimorphism in obesity risk, which were used to create a multiexposure profile. We applied causal random forest to classify individuals into two environments: E1 and E0. E1 consists of a combination of exposure levels where girls have significantly less risk of obesity than boys, as compared to E0, which consists of the remaining combination of exposure levels. We investigated whether the association between sex and neurodevelopmental delay also differed between E0 and E1. We used methylation data to perform an epigenome-wide association study between the environments to see the effect of belonging to E1 or E0 at the molecular level.
Results
We observed that E1 was defined by the combination of low dairy consumption, non-smokers’ cotinine levels in blood, low facility richness, and the presence of green spaces during pregnancy (ORinteraction = 0.070, P = 2.59 × 10−5). E1 was also associated with a lower risk of neurodevelopmental delay in girls, based on neuropsychological tests of non-verbal intelligence (ORinteraction = 0.42, P = 0.047) and working memory (ORinteraction = 0.31, P = 0.02). In line with this, several neurodevelopmental functions were enriched in significant differentially methylated probes between E1 and E0.
Conclusions
The risk of obesity can be different for boys and girls in certain prenatal environments. We identified an environment combining four exposure levels that protect girls from obesity and neurodevelopment delay. The combination of single exposures into multiexposure profiles using causal inference can help determine populations at risk.