The article provides a brief analysis of the starting processes of electrical devices in autonomous systems of limited power. The existing methods of automatic start-up and regulation of the operation of electrical machines and apparatus are considered, which are a multi-link system, the reliability of which is determined by a number of intermediate links, and the stepping is one of the biggest drawbacks that negatively affect the dynamics of the starting process. In addition, the issues of simplicity, low cost and small dimensions of the automatic control system for electrical installations are of particular importance in the problem of energy saving. The use of low-power thermistors as part of starting devices requires intermediate equipment and various components, which significantly reduces the reliability of the equipment. The increase in currents flowing through the ballasts simplifies the electrical control and regulation circuits. For the use of polycrystalline semiconductor thermistors in circuits with high currents, it is necessary to use special designs in order to prevent overheating of the thermistor material. The article provides algorithms for the synthesis of starting rheostats. A number of restrictions are considered and formulated, on which the nature of the processes of starting electric motors with the help of thermistor rheostats, which ensure the fulfillment of certain restrictions, depends. Recommendations are given for the formation of optimal starting processes using rheostats built on semiconductor polycrystalline thermistors.