Purpose
The quality of production is an essential factor for the performance measure of a system; a casting process is the same section. It is a type of metal-forming practice in which the required shape of metal is acquired by pouring molten metal into the mold cavity and allowing it to solidify. Casting is done to provide strength and rigidity to the parts of a system for bearing mechanical impacts. The purpose of this paper is to investigate the various aspects which affect the casting process in the foundry industry, in order to optimize the quality of casting, with the assumption that sufficient repair facility is always available.
Design/methodology/approach
The considered casting system can have many defects such as the mold shift defect, blowhole defect, defect of shrinkage and porosity, defect of inclusion, defect of cold shut and much more. The studied system can be in three states during the process, namely, good state, failed state and degraded state. The system can repair after minor failures as well as a major failure. The average failure rates of various defects of the system considered as constant and repairs follow the general time distribution. The system is analyzed with the help of the supplementary variable technique and the Laplace transformation for evaluating its various performance measures in order to improve its performance/production.
Findings
This work provides a strong understanding of the casting industry, that which failure affects the production of casting and how much. For better understanding, the results have been demonstrated with the help of graphs.
Originality/value
In the present paper, a mathematical model based on the casting process in manufacturing industry has been developed.