Currently, a new generation of pressurized water reactor for nuclear power plants with an extended service life (up to 60 years) and a guarantee of their complete safety are being designed in Russia. Analysis of the reactor internal elements performance showed, that designed service life cannot be guaranteed if the reactor’s internal parts would be made from currently used stainless steel (18-10 alloy type). Instead of the used steel, to ensure operability, new austenitic stainless steel (16-25 alloy type), with increased resistance to radiation swelling, is being developed for production of forged ring blanks for core baffle. The use of new steel requires revision of the existing metallurgical production technology stages. Therefore in this paper diffusion experiment was carried out to determine the required duration of homogenization. The results are presented in terms of different duration of the high-temperature exposure effect on the liquation heterogeneity equalization. The relation between duration of homogenization and microhardness is also shown.