Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
To solve the problem of low efficiency of manual harvesting of green soybeans and lack of adaptable harvesters, in this study, a brushing-type green soybean harvester was designed. The comb-brushing type green soybean pod harvesting equipment is composed of a front-mounted separation drum, a full-width material delivery mechanism, a negative pressure cleaning system, and a stalk-pod separation system. Based on the operation requirements of the front-mounted brushing-type detachment drum, the drum parameters, parameters of comb arrangement, and structural parameters of the comb, the force analysis in detachment was performed. By taking the pod detachment rate and damage rate as the response indexes, the rotational speed of the drum, the travel speed of the device, and teeth distance as influencing factors, a three-factor five-level orthogonal rotary combination test was carried out by the software Design-Expert. By establishing mathematical regression models for various influencing factors and evaluation indicators, conducting variance analysis and significance analysis on the response indicators of each factor, the optimal parameters were obtained at a rotational speed of teeth of 397.36 rpm/min, minimum axial teeth distance of 4.8 mm and travel speed of the device of 0.5 m/s. Field test results showed that, under the optimal parameter combination, the pod detachment rate was 94%, the damage rate was 3.04%, the harvesting efficiency was greater than 0.187 hm2/h, and impurity content was less than 7.8%, all of which met the design and usage requirements. The research results can provide a reference for the design of soybean harvesters.
To solve the problem of low efficiency of manual harvesting of green soybeans and lack of adaptable harvesters, in this study, a brushing-type green soybean harvester was designed. The comb-brushing type green soybean pod harvesting equipment is composed of a front-mounted separation drum, a full-width material delivery mechanism, a negative pressure cleaning system, and a stalk-pod separation system. Based on the operation requirements of the front-mounted brushing-type detachment drum, the drum parameters, parameters of comb arrangement, and structural parameters of the comb, the force analysis in detachment was performed. By taking the pod detachment rate and damage rate as the response indexes, the rotational speed of the drum, the travel speed of the device, and teeth distance as influencing factors, a three-factor five-level orthogonal rotary combination test was carried out by the software Design-Expert. By establishing mathematical regression models for various influencing factors and evaluation indicators, conducting variance analysis and significance analysis on the response indicators of each factor, the optimal parameters were obtained at a rotational speed of teeth of 397.36 rpm/min, minimum axial teeth distance of 4.8 mm and travel speed of the device of 0.5 m/s. Field test results showed that, under the optimal parameter combination, the pod detachment rate was 94%, the damage rate was 3.04%, the harvesting efficiency was greater than 0.187 hm2/h, and impurity content was less than 7.8%, all of which met the design and usage requirements. The research results can provide a reference for the design of soybean harvesters.
Purpose: A threshing machine for shatter-resistant sesame was designed and developed in this study. Methods: Two types of sesame (shatter-resistant and conventional) were tested using the developed sesame threshing system. Three types of serrated bars were designed and evaluated through performance tests, in terms of the ratio of unthreshed sesame. Results: In the case of conventional sesame, the ratio of unthreshed sesame did not show any difference with bar type or cylinder rotation speed. For shatter-resistant sesame, however, the ratio of unthreshed sesame decreased with increased cylinder rotating speed for all three types of bar. Conclusions: These results are useful for the construction and utilization of an efficient threshing harvester. The type-L bar showed the best result in the energy equation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.