Eine überlebenswichtige Eigenschaft von Mensch und Tier ist es, sich bei Gefahr durch eine Schreckreaktion in Sicherheit zu bringen. Doch woran erkennt ein Organismus, in welcher Situation es „sinnvoll“ wäre, sich zu erschrecken und welche Eigenschaften sensorischer Stimuli tragen zu dem Gefahreneindruck bei? Bei plötzlich eintretenden, lauten auditorischen Reizen kann es zur Auslösung der akustischen Schreckreaktion kommen. Dies führt bei Menschen, aber auch bei kleineren Säugetieren zu einer reflexartigen Kontraktion der Nacken-, Gesichts- und Skelettmuskulatur. Die Erforschung der akustisch evozierten Schreckreaktion (ASR) dient dem besseren Verständnis der neurobiologischen Grundlagen sensorischer Verarbeitung. Modulationen der ASR mithilfe von Präpulsen (Präpulsinhibition) ermöglichen Einblicke in die Funktion der Kochlea, des Hörnervs, der Hirnstammstrukturen und anderer beteiligter Gehirnregionen. In dieser Arbeit wurden kurzzeitige Änderungen von Frequenz oder Intensität des akustischen Hintergrundes als neuartige Präpulse untersucht. Die Bedeutung verschiedener Reizparameter dieser Präpulse wurde in der vorliegenden Arbeit zum ersten Mal systematisch erforscht. Um zu prüfen, welche Präpulsstimulationen eine Inhibition der ASR auslösen können, wurde eine Reihe von Parametern umfassend getestet. In einem weiteren Schritt wurde analysiert, ob es mithilfe von gezielten Änderungen von Frequenz oder Intensität möglich sein könnte, Unterscheidungsschwellen, oder gar Hörschwellen von Versuchstieren zu bestimmen. Die Experimente zur Modulation der ASR wurden mit weiblichen Sprague Dawley-Ratten durchgeführt. Dabei wurde eine Vielzahl von Verhaltensparadigmen untersucht. Dazu zählten Präpulse mit unterschiedlichem Frequenzgehalt und variabler Dauer. Zusätzlich wurden neuartige Paradigmen etabliert, um die Fähigkeit zur Frequenz- und Intensitätsdiskriminierung zu untersuchen. Hierbei wurde der Frequenzgehalt oder die Intensität einer kontinuierlichen Hintergrundstimulation verändert, um eine Präpulswirkung zu erzeugen. Um die Möglichkeiten der Bestimmung von Hörschwellen mittels der Präpulsinhibition (PPI) zu ergründen, wurde die Intensität von Präpulsen systematisch verändert. Die so generierten Schwellenwerte wurden durch die Messung früher akustisch evozierter Hirnstammpotenziale verifiziert. Schließlich sollten, unter Zuhilfenahme der Signaldetektionstheorie, aus den erhobenen Daten diverse Schwellen bestimmt werden: Für die Intensitätsänderungen der Präpulse in Stille wurden Hörschwellen bestimmt, während bei Änderungen der Frequenz und Intensität Unterscheidungsschwellen bestimmt werden sollten. Mit steigender Größe eines Frequenzsprungs in einer kontinuierlichen Hintergrundstimulation war eine stärkere Inhibition der ASR feststellbar; ein Effekt, der stark von der Hintergrundfrequenz abhängig war. Bei einer Stimulation mit 8 kHz konnten signifikant höhere Inhibitionswerte erzielt werden als mit 16 kHz. Bei der Untersuchung des Zeitablaufs der Stimulation ergab sich, dass eine abgesetzte Stimulation mit einer Abweichung von 80 ms Dauer bis 50 ms vor dem Schreckreiz für die höchsten Inhibitionen sorgte. Die durch eine Intensitätsänderung einer kontinuierlichen Hintergrundstimulation ausgelöste PPI hing primär von der Größe und Richtung des Intensitätssprungs ab. Mit zunehmender Sprunggröße stiegen die Inhibitionswerte an. Eine Erhöhung der Hintergrundintensität um 10 dB hatte einen signifikanten Einfluss auf die Inhibitionswerte. Auch hier zeigte sich eine höhere Sensitivität in Form von höheren Inhibitionen für Stimuli mit einer Hintergrundfrequenz von 8 kHz als für alle anderen getesteten Hintergrundfrequenzen. Die Bestimmung von Hörschwellen mittels intensitätsabhängiger PPI wies im Vergleich mit den elektrophysiologisch bestimmten Hörschwellen ein heterogenes Bild mit starken individuellen Schwankungen auf: Bei etwa der Hälfte der Tiere waren die Hörschwellen beider Messungen sehr vergleichbar, bei den übrigen Tieren konnten mittels PPI für eine oder mehrere Frequenzen keine aussagekräftigen Hörschwellen erzielt werden. Die elektrophysiologisch bestimmten Hörschwellen waren am sensitivsten, während PPI-Stimulationen signifikant höher waren. Außerdem bewirkten PPI-Stimulationen mit Reintönen signifikant sensitivere Hörschwellen im Vergleich zu einem Schmalbandrauschen. Für die Bestimmung der Unterscheidungsschwellen von Frequenzänderungen konnte beobachtet werden, dass die Tiere auf Frequenzsprünge hin zu niedrigeren Frequenzen signifikant sensibler reagierten, als hin zu Aufwärtssprüngen (-1.2 bzw. +4.5%). Bei der Intensitätsunterscheidung hingegen konnte beobachtet werden, dass die Tiere signifikant sensitiver auf Intensitätserhöhungen als auf Erniedrigungen reagierten (-5.9 bzw. +2.7 dB). Zusammenfassend konnte in der vorliegenden Arbeit festgestellt werden, dass die PPI zur Bestimmung von absoluten Hörschwellen starken Schwankungen unterlag, sodass diese Methode nur eingeschränkt als Alternative zu operanter Konditionierung oder elektrophysiologischen Ableitungen in Frage kommt. Des Weiteren erzeugten bereits kleine Änderungen des Frequenzgehalts oder der Intensität einer Hintergrundstimulation eine robuste PPI. Somit können reflexbasierte Messungen mit überschwelligen Stimuli genutzt werden, um Unterscheidungsschwellen in Versuchstieren zu bestimmen. Diese Herangehensweise stellt also eine vielversprechende Methode dar, um Hörstörungen zu untersuchen, die nach einem Schalltrauma auftreten können. In einem nächsten Schritt könnte sie zur weiteren Charakterisierung von verstecktem Hörverlust beitragen.