Eco-friendly synthesis of silver nanoparticles (SN) by using a naturally occurring plant, such as Nitrosalsola (Salsola) vermiculata (SV), could be a novel way for appropriate wound healing. AgNO3 was reduced by SV to produce safe SN (SN-SV) extract and hasten the wound healing process. The obtained SN-SV were characterized by size, charge, wavelength, and surface morphology. The optimized formulation was dispersed in O/W cosmetic cream. Then, it was characterized in terms of pH, viscosity, homogeneity, and permeability. The ex vivo and in vivo studies have been conducted in a rat animal model to assess the potential of SN-SV cream on skin tissue regeneration. A skin punch biopsy was obtained to investigate the histopathological (HP) changes in the skin lesions of all rats by the H&E staining and PCNA immunostaining methods. The skin wounds in all subgroups were examined on days 5, 11, and 15 to analyze the effectiveness of SN-SV cream for treating surgical skin wounds. The prepared SN-SV had a particle size of 37.32 ± 1.686 nm, a charge of −1.4 ± 0.7 mV, non-aggregated SN-SV, and a λmax of 396.46 nm. The formed SN-SV cream showed a pH near the skin’s pH, with suitable viscosity and homogeneity and an apparent permeability of 0.009 ± 0.001. The HP changes in the SN-SV subgroups revealed a substantial reduction in wound size and improvement in wound granulation tissue formation and epidermal re-epithelialization (proliferation) compared to the healing in the SN subgroups. The current work revealed that SN-SV could be a novel skin-wound-healing agent with a practical application as a wound-healing platform.