Background: Breeding programs need to work with magnitudes of genetic variation in order to achieve the best results. In this study, we have estimated the genetic diversity and evaluated the field performance of 18 faba bean genotypes from different origins, during the 2014-2015 and 2015-2016 growing seasons. Results: The field evaluations revealed that the faba bean genotypes showed enough variation for their agronomic thoughtful parameters. ALB was noted as being the genotype that was the tallest (126.25 cm), but the superlative genotypes were L251 and L252 for a high number of seeds per plant (72.25) and the maximum seed yield per plant (56.40 g). The estimations of the genetic diversity between all of the faba bean genotypes were done using eight sequence-related amplified polymorphism (SRAP)-combined primers. The number of different alleles amplified for each polymorphic marker, ranged from 2 to 9, was observed by SRAP genotyping, with polymorphic information contents (PIC) between 0.445and 0.896, and discrimination power (DP) with an average of 0.125 per allele. Conclusions: Across both years, the best grain yields were gathered from the L25, L252, and L182 genotypes, in descending order, whereas the ALB genotype had the lowest grain yield in comparison with the other genotypes. The cluster analysis of faba bean genotypes was generally based on not only the origin but also the genetic background.