Hematological malignancies encompass a wide variety of severe diseases that pose a serious threat to human health. Given the fact that hematological malignancies are difficult to treat due to their unpredictable and rapid deterioration and high rates of recurrence, growing attention has been paid to their early screening and diagnosis. However, developing a rapid and effective diagnostic tool featuring a noninvasive sampling technique is still extremely challenging. In recent years, novel nanomaterials-based electrochemical biosensors have attracted great interest because of such advantages as simple operation, low cost, fast response, etc. As a kind of rising nanomaterials, two-dimensional materials have excellent electronic and chemical properties, which have been proven to improve the performance of electrochemical biosensors. This review summarizes the applications of different types of electrochemical biosensors (nucleic acid sensors, immunosensors, aptamer biosensors, and cytosensors) based on two-dimensional materials in the detection of biological molecules related to hematological malignancies. Two-dimensional materials-based electrochemical biosensors designed for the diagnosis of leukemia could rapidly detect the target biomolecules at a trace level and show great merits such as wide linear range, low detection limit, high sensitivity, excellent selectivity, and cost-effectiveness. In addition, these biosensors have also achieved satisfactory results in the diagnosis of lymphoma and multiple myeloma. Thus, two-dimensional materials-based electrochemical biosensors are attractive for the early diagnosis of hematological malignancies in clinical practice. Nevertheless, more efforts are still required to further improve the performance of electrochemical biosensors. In this review, we propose the possible main concerns in the design of future two-dimensional materials-based electrochemical biosensors, involving the development of sensors for synchronous detection of diverse target biomolecules, the exploration of other superior two-dimensional materials, the simplification of the sensors fabrication process, the construction of new hybrid structures and how to avoid possible environmental issues.