2020
DOI: 10.12928/telkomnika.v18i5.16717
|View full text |Cite
|
Sign up to set email alerts
|

Development of video-based emotion recognition using deep learning with Google Colab

Abstract: Emotion recognition using images, videos, or speech as input is considered as a hot topic in the field of research over some years. With the introduction of deep learning techniques, e.g., convolutional neural networks (CNN), applied in emotion recognition, has produced promising results. Human facial expressions are considered as critical components in understanding one's emotions. This paper sheds light on recognizing the emotions using deep learning techniques from the videos. The methodology of the recogni… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
14
0
4

Year Published

2021
2021
2024
2024

Publication Types

Select...
4
4
2

Relationship

0
10

Authors

Journals

citations
Cited by 46 publications
(18 citation statements)
references
References 23 publications
0
14
0
4
Order By: Relevance
“…Hampir setiap aktivitas manusia selalu mengharapkan hasil yang maksimal sehingga diperlukan pernan teknologi [7]. Peningkatan luar biasa dalam perkembangan teknologi interaksi manusia-komputer yang canggih memungkinkan persoalan yang berhubungan dengan biometrik dapat diselesaikan bukan hanya sekedar mendeteksi jenis kelamin melainkan situasi mood seseorang juga dapat dipredisksi [8].…”
Section: Pendahuluanunclassified
“…Hampir setiap aktivitas manusia selalu mengharapkan hasil yang maksimal sehingga diperlukan pernan teknologi [7]. Peningkatan luar biasa dalam perkembangan teknologi interaksi manusia-komputer yang canggih memungkinkan persoalan yang berhubungan dengan biometrik dapat diselesaikan bukan hanya sekedar mendeteksi jenis kelamin melainkan situasi mood seseorang juga dapat dipredisksi [8].…”
Section: Pendahuluanunclassified
“…In our experiments, we perform our implementation using an open-source library called Keras which was developed in 2018 by Chollet et al [33]. The training process is done on the Google Colaboratory platform through a Tesla K80 GPU [34], [35] for 100 epochs. We selected the RMSprop as the main optimizer to train our model.…”
Section: Training Data Processmentioning
confidence: 99%
“…The third challenge is the creation of the app ui, we used flutter to create an android app using an android emulator [7]. Flutter is constantly used for creation of android and IOS app and doesn't supply much back end resources for audio or musical uses [8].We had to create the back end that wasn't linked with flutter and is on the google collab that is able to pull online python packages capable of overcoming the challenges needed [9]. Since flutter and google collab are not linked by any direct path or package, we had to create our own way to send audio information from the app into the converter and from the converter back into the app.…”
Section: Connecting Our Powerful Musical Backend To a Comfortable Fro...mentioning
confidence: 99%