Duplex stainless steels have been extensively used in parts that are subject to corrosive environments and that have high mechanical strength requirements. Welding usually distorts the well-balanced austenite-ferrite ratio, and can produce brittle intermetallic phases; therefore, post-welding heat treatments are usually required. For applications where post-welding treatments are not possible, low heat input methods, such as micro-tungsten inert gas welding (TIG) and laser beam welding (LBW), can be used. The present investigation analyzed the microstructure, mechanical, and corrosion properties of 2507-classduplex steel tubes after welding. The microstructures of the heat-affected zones and the fusion zones contained variable amounts of ferrite and austenite. In the heat-affected and fusion zones in the TIG samples, the microstructures were primarily composed of ferrite grains with allotriomorphic austenite at the grain boundaries, intragranular Widmanstätten needles and plate-like precipitates. The LBW samples showed much finer microstructures, which contained austenite in the grain boundaries and fine austenite precipitates in the ferrite grains. Deleterious intermetallic phases, such as σ-phases, were not observed using X-ray diffraction. The tensile strength properties were very similar for the TIG and LBWsamples, reaching tensile strengths of approximately 840 MPa and total elongations between 61 and 87%. The heat-affected zone of the TIG welds were particularly susceptible to corrosion (0.05 mm/year) compared to the base metal (0.007 mm/year) and the laser welds (0.01 mm/year). Therefore, laser welding is a promising technique for the welding of 2507-class duplex tubes.