Supermartensitic stainless steels (SMSS) are an alternative to corrosion-prone carbon steels and expensive duplex stainless steels in offshore tubing applications for the oil and gas industry. Due to their differentiated alloying, SMSS exhibit superior toughness, corrosion resistance, and weldability properties when compared with another viable option, conventional martensitic stainless steels. However, when cathodically protected in a seawater environment they can be susceptible to embrittlement due to hydrogen charging. In the present study, SMSS samples were removed from deep water pipelines and their fracture toughness in the as-received condition and with different heat treatments was evaluated. Tests were carried out in air and in harsh environmental and loading conditions, which were ensured by subjecting specimens to cathodic overprotection, simulating effects seen in structures with complex geometries, and to incremental step loads in a synthetic seawater environment, thus favoring hydrogen diffusion to the precrack tip. The fracture surfaces of the specimens were analyzed in order to identify hydrogen-induced embrittlement and fracture toughness values of specimens tested in air were compared to values obtained in environment-assisted experiments. The influence of microstructure was evaluated by control of the retained austenite and d-ferrite contents of the specimens. The results show a significant drop in the fracture toughness of steel in the studied environment, with a fracture mode which is clearly more brittle and dependent on microstructural characteristics of the samples.