The amorphous form of poorly soluble drugs is physically unstable and prone to crystallization, resulting in decreased solubility and bioavailability. However, the conventional accelerated stability test for amorphous drugs is time-consuming and inaccurate. Therefore, there is an urgent need to develop rapid and accurate stability assessment technology. This study used the antitumor drug nilotinib free base as a model drug. The degree of disorder and physical stability in the amorphous form was assessed by applying the pair distribution function (PDF) and principal component analysis (PCA) methods based on powder X-ray diffraction (PXRD) data. Specifically, the assessment conditions, such as the PDF interatomic distance range, PXRD detector type, and PXRD diffraction angle range were also optimized. The results showed that more reliable PCA data could be obtained when the PDF interatomic distance range was 0–15 Å. When the PXRD detector was a semiconductor-type detector, the PDF data obtained were more accurate than other detectors. When the PXRD diffraction angle range was 5–40°, the intermolecular arrangement of the amorphous drugs could be accurately predicted. Finally, the accelerated stability test also showed that under the above-optimized conditions, this method could accurately and rapidly assess the degree of disorder and physical stability in the amorphous form of drugs, which has obvious advantages compared with the accelerated stability test.