Nighttime lights (NTL) are a popular type of data for evaluating economic performance of regions and economic impacts of various shocks and interventions. Several validation studies use traditional statistics on economic activity like national or regional gross domestic product (GDP) as a benchmark to evaluate the usefulness of NTL data. Many of these studies rely on dated and imprecise Defense Meteorological Satellite Program (DMSP) data and use aggregated units such as nation-states or the first sub-national level. However, applied researchers who draw support from validation studies to justify their use of NTL data as a proxy for economic activity increasingly focus on smaller and lower level spatial units. This study uses a 2001–19 time-series of GDP for over 3100 U.S. counties as a benchmark to examine the performance of the recently released version 2 VIIRS nighttime lights (V.2 VNL) products as proxies for local economic activity. Contrasts were made between cross-sectional predictions for GDP differences between areas and time-series predictions of GDP changes within areas. Disaggregated GDP data for various industries were used to examine the types of economic activity best proxied by NTL data. Comparisons were also made with the predictive performance of earlier NTL data products and at different levels of spatial aggregation.