Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Abstract. Currently, terahertz remote sensing technology is one of the best ways to detect the microphysical properties of ice clouds. Influenced by the representativeness of the ice crystal scattering (ICS) model, the existing terahertz ice cloud remote sensing inversion algorithms still have significant uncertainties. In this study, based on the Voronoi ICS model, we developed a terahertz remote sensing inversion algorithm of the ice water path (IWP) and median mass diameter (Dme) of ice clouds. This study utilized the single-scattering properties (extinction efficiency, single-scattering albedo, and asymmetry factor) of the Voronoi, sphere, and hexagonal column ICS models in the terahertz region. Combined with 14 408 groups of particle size distributions obtained from aircraft-based measurements, we developed the Voronoi, sphere, and column ICS schemes based on the Voronoi, sphere, and column ICS models. The three schemes were applied to the radiative transfer model to carry out the sensitivity analysis of the top-of-cloud (TOC) terahertz brightness temperature differences between cloudy and clear skies (BTDs) on the IWP and Dme. The sensitivity results showed that the TOC BTDs between 640 and 874 GHz are functions of the IWP, and the TOC BTDs of 380, 640, and 874 GHz are functions of the Dme. The Voronoi ICS scheme possesses stronger sensitivity to the Dme than the sphere and column ICS schemes. Based on the sensitivity results, we built a multi-channel look-up table for BTDs. The IWP and Dme were searched from the look-up table using an optimal estimation algorithm. We used 2000 BTD test data randomly generated by the RSTAR model to assess the algorithm's accuracy. Test results showed that the correlation coefficients of the retrieved IWP and Dme reached 0.99 and 0.98, respectively. As an application, we used the inversion algorithm to retrieve the ice cloud IWP and Dme based on the Compact Scanning Submillimeter-wave Imaging Radiometer (CoSSIR) airborne terahertz radiation measurements. Validation against the retrievals of the Bayesian algorithm reveals that the Voronoi ICS model performs better than the sphere and hexagonal column ICS models, with enhancement of the mean absolute errors of 5.0 % and 12.8 % for IWP and Dme, respectively. In summary, the results of this study confirmed the practicality and effectiveness of the Voronoi ICS model in the terahertz remote sensing inversion of ice cloud microphysical properties.
Abstract. Currently, terahertz remote sensing technology is one of the best ways to detect the microphysical properties of ice clouds. Influenced by the representativeness of the ice crystal scattering (ICS) model, the existing terahertz ice cloud remote sensing inversion algorithms still have significant uncertainties. In this study, based on the Voronoi ICS model, we developed a terahertz remote sensing inversion algorithm of the ice water path (IWP) and median mass diameter (Dme) of ice clouds. This study utilized the single-scattering properties (extinction efficiency, single-scattering albedo, and asymmetry factor) of the Voronoi, sphere, and hexagonal column ICS models in the terahertz region. Combined with 14 408 groups of particle size distributions obtained from aircraft-based measurements, we developed the Voronoi, sphere, and column ICS schemes based on the Voronoi, sphere, and column ICS models. The three schemes were applied to the radiative transfer model to carry out the sensitivity analysis of the top-of-cloud (TOC) terahertz brightness temperature differences between cloudy and clear skies (BTDs) on the IWP and Dme. The sensitivity results showed that the TOC BTDs between 640 and 874 GHz are functions of the IWP, and the TOC BTDs of 380, 640, and 874 GHz are functions of the Dme. The Voronoi ICS scheme possesses stronger sensitivity to the Dme than the sphere and column ICS schemes. Based on the sensitivity results, we built a multi-channel look-up table for BTDs. The IWP and Dme were searched from the look-up table using an optimal estimation algorithm. We used 2000 BTD test data randomly generated by the RSTAR model to assess the algorithm's accuracy. Test results showed that the correlation coefficients of the retrieved IWP and Dme reached 0.99 and 0.98, respectively. As an application, we used the inversion algorithm to retrieve the ice cloud IWP and Dme based on the Compact Scanning Submillimeter-wave Imaging Radiometer (CoSSIR) airborne terahertz radiation measurements. Validation against the retrievals of the Bayesian algorithm reveals that the Voronoi ICS model performs better than the sphere and hexagonal column ICS models, with enhancement of the mean absolute errors of 5.0 % and 12.8 % for IWP and Dme, respectively. In summary, the results of this study confirmed the practicality and effectiveness of the Voronoi ICS model in the terahertz remote sensing inversion of ice cloud microphysical properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.