Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The paper focuses on foreign and Russian aviation bypass turbojets with an afterburner, studies the design of their turbine cooling systems, and introduces the research findings. For computational research and comparative analysis, we used Russian and foreign samples of advanced bypass turbojets with an afterburner with the most optimal technical characteristics, made calculations of the gas-dynamic parameters of their cooling systems in four critical jet operating modes. In this paper, we introduce the results of hydraulic calculations of various schemes for supplying cooling air to the nozzle and working blades of a high-pressure turbine. Relying on the results of the calculation, we comparatively analyzed the foreign and Russian cooling systems design, in terms of power indicators and efficiency of a gas turbine jet. To do this, we used the following parameters: cooling air bleeding value at maximum jet speed and cruising mode, value of cooling air leakage through the axial gaps into the flow path, the change in the cooling air bleeding value as a percentage of the flow rate through the high-pressure compressor when switching from maximum to cruising mode, i.e. adaptability of the cooling system, the temperature of the cooling air at the point of supply to the cooling cavities of the blade of the nozzle apparatus or the working blade.
The paper focuses on foreign and Russian aviation bypass turbojets with an afterburner, studies the design of their turbine cooling systems, and introduces the research findings. For computational research and comparative analysis, we used Russian and foreign samples of advanced bypass turbojets with an afterburner with the most optimal technical characteristics, made calculations of the gas-dynamic parameters of their cooling systems in four critical jet operating modes. In this paper, we introduce the results of hydraulic calculations of various schemes for supplying cooling air to the nozzle and working blades of a high-pressure turbine. Relying on the results of the calculation, we comparatively analyzed the foreign and Russian cooling systems design, in terms of power indicators and efficiency of a gas turbine jet. To do this, we used the following parameters: cooling air bleeding value at maximum jet speed and cruising mode, value of cooling air leakage through the axial gaps into the flow path, the change in the cooling air bleeding value as a percentage of the flow rate through the high-pressure compressor when switching from maximum to cruising mode, i.e. adaptability of the cooling system, the temperature of the cooling air at the point of supply to the cooling cavities of the blade of the nozzle apparatus or the working blade.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.